851

STATE LEVEL ENVIRONMENT IMPACT ASSESSMENT AUTHORITY

SEAC-2015/CR-268/TC-2 Environment department, Room No. 217, 2nd floor, Mantralaya Annexe, Mumbai-400 032. Date: 17th October, 2016.

To, M/s. Anuh Pharma Ltd. 3-A, Shivsagar Estate, North Wing, Dr. /Annie Besant Road, Worli, Mumbai- 400 018.

Subject: Environment clearance for Expansion and new project for manufacturing of advanced intermediates and bulk drugs at plot no- E-17/3, E-17/4 & E-18, MIDC Tarapur Boiser, Palghar by M/s. Anuh Pharma Ltd.

Sir,

This has reference to your communication on the above mentioned subject. The proposal was considered as per the EIA Notification, 2006, by the State Level Expert Appraisal Committee-I, Maharashtra in its 127th meeting and decided to recommend the project for prior environmental clearance to SEIAA. Information submitted by you has been considered by State Level Environment Impact Assessment Authority in its 103rd meeting.

2. It is noted that the proposal is considered by SEAC-I under screening category 5(f) B1 as per EIA Notification 2006.

Brief Information of the project submitted by Project Proponent is as:

J I 101 1	mioi mation of the brol	ect submitted by Froject Froponent is as:
		M/s AnuhPharma Ltd.
1	Name of project	Expansion & New project for manufacturing of Advanced
		Intermediates and Bulk Drugs
		Mr.Vivek Shah
	Name, address, e-	3-A,Shivsagar Estate, North Wing,
2	mail & contact	Dr. Annie Besant Road, Worli, Mumbai-400018
	number of proponent	e-mail: vivek@sk1932.com
		contact number :022 27781881/82
3	Name of consultant	M/s. Goldfinch Engineering Systems Pvt. Ltd.
-	A 1'	G N. 75 ' OCINIA DERIVA 166 (I. 2015) C. d.
	Accreditation of	S. No. 75 in QCI NABET List 166 (Jan. 2015)-for the proposed
4	consultant	project category (5f) of the MoEF EIA notification Schedule
	(NABET	
-	Accreditation)	
	New	
5	project/expansion in	Expansion and New project
-	existing	
	project/modernizatio	

	n/diversification in existing project										
6	If expansion/diversific ation, whether environmental clearance has been obtained for existing project (If yes enclose a copy with compliance table)	requiren	No. The facility was started way back in 1980 and there was no requirement of EC at that time. Consent to operate was obtained from MPCB and renewed from time to time.								
7	Activity schedule in the EIA Notification	5 (f) B									
8	Area Details	, -	ot area - 11580 sq. n d Built up area - 349								
9.	Name of the Notified Industrial Area/ MIDC area	Boiser,	Tarapur Industrial E	state							
10.	TOR given by SEAC? (If yes then specify the meeting)	Yes. 11:	Yes. 113 th SEAC Meeting								
11.	Estimated capital cost of the project (Including cost for land, building, plant and machinery separately)	Rs.34.4	Rs.34.45 Cr.								
12.	Location details of the project:	Longitu Location	e: 19 ⁰ 48'06.3 N de: 72 ⁰ 44' 02.7 E. n: Tarapur MIDC, I on above mean sea lo			ft (13.89 m)					
13.	Distance from protected areas/ critically polluted areas/ Eco Sensitive area/ inter- sate boundaries	No such	n area in the vicinity	•							
	Raw materials (including process chemicals, catalysts & additives)	Please r	refer table below								
14.											
14.	$\left \left \frac{\mathbf{r}}{\mathbf{N}} \right \right $ PRODUCT $\left \mathbf{I} \right $	Monthly Production (Kg)	SOLVENTS	Consu mptio n/Kg	Monthly Consumpt ion (Kg)	Monthly Consumptio n (Tons)					
	1 Atorvastati n Calcium	20000	Cyclohexane IPA	20.25	405000 745000	405.00 745.00					

				MeOH	24.85	497000	497.00
				Aromatic			
				Derivative	1.065	21300	21.30
				Aliphatic			
				Compound	1.595	31900	31.90
				HC1	0.015		
				NaOH	0.075		
				Calcium Chloride	0.185	3700	3.70
				MIBK	3.5	70000	70.00
				MeOH	5.875		0.00
				Acetone	2.465		0.00
				BCFl	0.53	10600	10.60
				Br-OTBN	0.77	15400	15.40
				TBAB	0.025	500	0.50
				Toluene	4.135	82700	82.70
				NaOH	0.24	4800	4.80
				TEA	0.065	1300	1.30
				TEA.HCL	1.4	28000	28.00
		-		HC1	0.315		
	2	Losartan		Ethyl Acetate	1.97		
	•	Potassium		Sodium Sulphate	0.025		
				Sodium			
				bicarbonate	0.095		
				Sodium			
				hydrosulphite	0.05	1000	1.00
				Sodium azide	0.605	12100	12.10
				NaNO2	0.24	4800	4.80
				Sodium borohydride	0.04	800	0.80
				Charcoal	0.04	800	0.80
				K2CO3	·	2500	2.50
				Hyflow	0.175	3500	3.50
				Acetone	7.98		
				Ethyl Acetate	0.76		
				Butanol	5.54	110833.3	110.83
				MeOH	5.54	110055.5	110.85
				Benzimidazole	1 3.34		
				Derivative	0.76	15166.7	15.17
	3	Telmisartan		Br-OTBN	0.68	13666.7	13.67
	-			ammonia	0.06	1166.7	1.17
				Charcoal	0.03		
				Hyflo	0.03		
				КОН	0.19	3833.3	3.83
				NaOH	0.45		
			:	Acetic Acid	0.71	14166.7	14.17
		Clopidogrel		MeOH	9.97	199400.0	199.40
	4	Bisulphate		MDC	12.12	242400.0	242.40
<u>L</u> _		<u> </u>					1

				IPA	3		
				Acetone	11.32	226400.0	226.40
				Toluene	3.86		
				2- Chlorophenyl	-		
				Glycine	0.765	15300.0	15.30
				H2SO4	1.02	20400.0	20.40
				Tartaric Acid	0.625	12500.0	12.50
11				NH3	1.72	34400.0	34.40
				Thiophene-2-			
				Ethanol	0.595	11900.0	11.90
				Ethyl acetate	3.9	78000	78.00
				Dipotassium			
				hydrogen			
				phosphate	1.5	30000	30.00
				HCl	0.65	13000	13.00
				Hyflo	0.08	1600	1.60
				PTSCI	0.98	19600	19.60
				Sodium sulphate	0.1	2000	2.00
				Carbon	0.08	1600	1.60
				NaOH	0.79	15800	15.80
				Formaldehyde	6.38	127600	127.60
		:		Sodium			
				bicarbonate	0.3	6000	6.00
				Methylene	57	57000	57.00
	_	Erythromyc		Chloride	5.7	57000	57.00
	5	in		Erythromycin Thiocyanate	0.79	7900	7.90
				Caustic Soda	0.07	7700	7.70
				Methyl Chloride	4.1	41000	41.00
				Erythromycin	7.1	71000	71.00
	6	Stearate		Thiocyanate	0.55		
	Ĭ			Stearic Acid	0.36	3600	3.60
			10000	Caustic Soda	0.07		
				Acetone	1.41	14100	14.10
				Ethyl Acetate	5.63	56300	56.30
				Propionic			
1				Anhydride	0.17	1700	1.70
	7	Estolate		Erythromycin			
				Thiocyanate	0.59		
				Caustic Soda	0.12	1200	1.20
				Sodium Lauryl			
				Sulphate	0.31	3100	3.10
				IPA	8.125	162500	162.50
		Da		МеОН	2.462	40050	40.25
	0	Ethambutol	20000		5	49250	49.25
	٥	1 -	20000	2- aminobutanol	6.6 0.457	132000	132.00
	oride			EDC	5	9150	9.15
				NaOH	0.321	6425	6.43

					25		
					0.357		
				HCI HCI	5	7150	7.15
					0.852		
		Pyrazinami		2-Cyanopyrazine	5	17050	17.05
	9	de		NaOH	0.005		
				HCI	0.01		
				MDC	26	52000	52.00
				Acetonitrile	5.785	11570	11.57
				L-Prolinamide	0.9	1800	1.80
				Dimethyl			
				acetamide	2.7	5400	5.40
				THF	2.7	5400	5.40
				2-Butanone	5.785	11570	11.57
				Na2SO4	0.45	900	0.90
	1	Vildagliptin		NaCl	0.45	900	0.90
	0	v ndagnpini		TEABC	0.305	610	0.61
				Chloroacetylchlor			
				ide	0.72	1440	1.44
				NaHCO3	0.45	900	0.90
				Trifluoroacetic			
				anhydride	1.645	3290	3.29
				3-amino-1-			
				adamantol	1.29	2580	2.58
				K2CO3	1.855	3710	3.71
				Ethyl Acetate	2.70	5400	5.40
				Cyclohexane	2.70	5400	5.40
			2000	MDC	13.00		
				MeOH	6.50	13000	13.00
				Xanthine			
	1	Linagliptin		Derivative	1.35	2700	2.70
	1			Boc amino	0.75	1500	1.50
				Pipridine DMSO	0.75	1500	1.50
				NaCO3	4.30	8600	8.60
					0.48	950	0.95
				CF3COOH	3.20	6400	6.40
	<u> </u>			K2CO3	3.20	6400	6.40
				Toluene	6.35	12700	12.70
				IPA This sale	17.04	34080	34.08
				Thiazole derivative	0.50	1160	116
				Piperidine	0.58	1100	1.16
	1	Teneliglipti		derivative	0.58	1160	1.16
	$\frac{1}{2}$	n		Sodium	0.56	1100	1.10
				triacetoxyborohyd			
				ride	0.57	1140	1.14
				48%			
				Hydrobromic acid	0.97	1940	1.94
, ,	1	1	I	NaHCO3	0.345	690	0.69

		**************************************		Charcoal	0.06	120	0.12
				Hyflow	0.06	120	0.12
				Acetone	24.69	49383.3	49.38
				Acetonitrile	4.32	8633.3	8.63
	ŀ			MDC	25.13	50266.7	50.27
				Ethyl Acetate	5.72	11433.3	11.43
				Imidazole	0.58	1150.0	1.15
				TTBB	1.47	2933.3	2.93
	1	01	2000	Potassium Iodidie	0.10	200.0	0.20
	3	Olmesartan	2000	KOH	0.28	550.0	0.55
				K2CO3	1.23	2450.0	2.45
				TBAB	0.05	100.0	0.10
				Dimethyl			
				acetamide	0.54	1083.3	1.08
				Medoxomil	0.45	900.0	0.90
				HC1	2.26	4516.7	4.52
				Toluene	7.47	5602.5	5.60
				IPA	4.09	3067.5	3.07
	Erythromyc in 11,12 Carbonate 750		Acetone	2.1	1575	1.58	
			Erythromycin	0.97	727.5	0.73	
		750	Potassium				
		Carbonate		Carbonate	2	1500	1.50
				Ethylene		600	
				Carbonate	0.8	600	0.60
	-			NaCl	0.31	232.5	0.23
				Acetone	2.08	5200	5.20
				Ethyl Acetate	4.63	11575	11.58
	1			Erythromycin Thiocyanate	0.73	1825	1.83
	1 5	Succinate	2500	Caustic Soda	0.73	400	0.40
				3-ECPC	0.16	625	0.63
				Sodium	0.23	022	0.05
				Bicarbonate	0.32	800	0.80
				МеОН	6.825	6825	6.83
				MDC	27.3	27300	27.30
					21.12		
				Toluene	5	21125	21.13
				Acetone	2.425	2425	2.43
				K2CO3	0.507		
	1	Rosuvastati			5	507.5	0.51
	6	n Calcium	1000	NaCO3	5.875	5875	5.88
	"	II Culoiulli		Hypo Solution	2.775	2775	2.78
		1		HBR	1.3	1300	1.30
				tRIPHENYLpHO		_	
				SPHINE	1	1000	1.00
				Aliphatic	1 105	1105	
				compound (D5)	1.125	1125	1.13
				DMSO	9.375	9375	9.38

			Na2S2O3	4.85	4850	4.85
			Aromatic			
			compound Z7	1.2	1200	1.20
			Pet ether	4.7	4700	4.70
			KBr	0.1	100	0.10
			NaOH	2.35	2350	2.35
			MTBE	4.725	4725	4.73
			HCl	2.975	2975	2.98
			Calcium acetate	0.35	350	0.35
			MeOH	5.55	27750	27.75
			MDC	83.3	416500	416.50
			Racemic			
			carbamoyl	5.95	29750	29.75
			R- benzylamine	2.38	11900	11.90
1	Pregabalin	5000	TEA	1.67	8350	8.35
7	1 1 Cgavailii	3000	NaOH	1.71	8550	8.55
			Sodium			
			Hypochlorite	4.91	24550	24.55
			HCl	2.61	13050	13.05
			Charcoal	0.06	300	0.30
			Hyflow	0.06	300	0.30
			Ethyl Acetate	7.00	70000	70.00
	Levetiracet am		2- aminobutyramide hydrochloride	0.95	9475	9.48
1		10000	4- chlorobutyrylchlo			
			ride	1.06	10600	10.60
			Sodium Sulphate	1.7	17000	17.00
			KOH	1.7	17000	17.00
			A.C.N	13.25	132500	132.50
			HCI	0.5	5000	5.00
			MeOH	3.73	18650	18.65
			IPA	3.205	16025	16.03
1	Ambroxol		2-amino-3,5- dibromobenzalde hyde	0.745	3725	3.73
9	Hydrochlori de	5000	4- aminocyclohexan	0.245	1725	1.73
			Sodium	0.345	1725	1./3
			borohydride	0.115	575	0.58
			HCl	0.113	1200	1.20
			Acetonitrile			
) (MDC	5.67	4250	4.25
2	Moxifloxac			10.20	7650	7.65
2	in Hydrochlori	750	Charcoal	0.07	50	0.05
U	de		Propionic anhydride	1.23	925	0.93
		1	Boric Acid	0.17	125	0.13

				Nonane	0.33	247.5	0.25
				Sodium carbonate	0.53	400	0.40
				Gati ester	0.83	625	0.63
				Hyflow	0.07	50	0.05
İ				HCl	1.23	925	0.93
				MeOH	15.15	11362.5	11.36
				NH3	1.57	1175	1.18
				Methanol	4.495	44950	44.95
					1.812	74750	74.73
				Sulfanilamide	5	18125	18.13
	٠			Caustic Soda	1.162 5	11625	11.63
	2	Sulfadoxine	10000	Glacial Acetic	0.787		
	1			Acid	5	7875	7.88
				Activated			
				Charcoal	0.02	200	0.20
				Hyflo	0.02	200	0.20
				HCl	1.375	13750	13.75
				MDC	43	21500	21.50
				MeOH	3.675	1838	1.84
	**************************************			Ethyl Acetate	23.5	11750	11.75
			500	Heptane	13.27 5	6638	6.64
				Alanine ester	1.275	638	0.64
				Phenyl dichlorophosphate	1.325	663	0.66
	2	Sofosbuvir		N-methyl imidazole	3.9	1950	1.95
	2	Solosouvii	300	Uridine derivative	1.25	625	0.63
				HCl	3.125	1563	1.56
				NaHCO3	3.125	1563	1.56
1				Na2SO4	1.55	775	0.78
				Pyridine	34.4	17200	17.20
				t- butyldimethylsilyl chloride	0.15	75	0.08
				MTBE	11.72 5	5863	5.86
				2-chloromethyl- 3,4-dimethoxy pyridine	0.72	6493	6.49
	2	Pantoprazol		Methylene chloride	5.60	50400	50.40
	3	e Sodium	9000	5- Difluoromethoxy- 2- mercaptobenzimi			
				dazole	0.73	6557	6.56
				NaOH	0.75	1350	1.35
	<u></u>	L	L	1.10011	1 0.13	11220	1 1 1 2 2

1				HCl 30%	0.05	450	0.45
				Methanol	4.80	43200	43.20
				Ammonium	7.00	73200	73.40
				Chloride	1.55	13950	13.95
				Hypo solution	4.00	36000	36.00
				Acetone	6.00	54000	54.00
1				Activated carbon	0.10	900	0.90
				Hyflo	0.10	900	0.90
				Ethyl Acetate	39.95	19975	19.98
				MDC	36.55	18275	18.28
				MeOH	12.18	6090	6.09
				Toluene	4.81	2405	2.41
				Adamantane	1.01	2103	2.11
				derivative	1.97	985	0.99
- 1				Azabicyclo			
1				derivative	0.985	492.5	0.49
				N- methyl			
				morpholine	3.32	1660	1.66
				Butyl Acetate	4.67	2335	2.34
	2	C1!4!	500	Catalyst	4.63	2315	2.32
	4	Saxagliptin	500	NaOH	2.55	1275	1.28
				NaCl	0.41	205	0.21
				Na2SO4	0.61	305	0.31
				THF	20.8	10400	10.40
				Pyridine	1.95	975	0.98
				Trifluroacetic			
				anhydride	1.34	670	0.67
				K2CO3	3.57	1785	1.79
				Diethyl ether	10.4	5200	5.20
				HC1	2.37	1185	1.19
				Carbon	0.02	10	0.01
				Hyflow	0.02	10	0.01
			1	Ethyl Acetate	29.3	293000	293.00
				IPA	23	230000	230.00
				Triazole			
				derivative	1.19	11900	11.90
	2			Butanoic acid	1 45	14500	14.50
	2 5	Sitagliptin	10000	derivative Carbomoyldimida	1.45	14500	14.50
	ا			zole	0.845	8450	8.45
				HCl	5.24	52400	52.40
				NH3	7.36	·	**
				Orthophosphoric	7.30	73600	73.60
				acid	0.54	5400	5.40
			-		0.51	5 100	
\dashv			J	1	<u> </u>	1	1
5	Proc Deta	luction					
~ '							

-9-

	Sr. No.	Existing Products		Quantity MT / Month
	1	Erythromycin Salts		
	2	Pyrazinamide Salts		_
	3	Chloramphenicol		52.55
	4	ChloramphenicomPalimitate		-
	5	Sulphadoxine		-
Sr. No.	Proposed Pro		Quai	ntity /Month
Cardiov	vascular Products		1411	AVIOLUI
1	Atorvastatin		20	
2	Losartan Pota	nssium		
3	Telmisartan			
4	Clopidogrel			
Erythro	mycin Derivative	s	10	
5	Erythromycii	1		
6	Erythromycii			
7	Erythromycii			
	uberculosis Produ	ets	20	
8	Ethambutol			
9	Pyrazinamide	2		
Gliptin			_ 2	
10 11	Vildagliptin Linagliptin		-	
12	Teneligliptin		_	
	ual Products		!	
13	Olmesartan		2	
14	Erythromycii	n 11,12 Carbonate	0.75	
15	Erythromycia	n Ethyl Succinate	2.5	
16	Rosuvastatin		1	
17	Pregabalin		5	
18	Levetricetam		10	
19	Ambroxol H	ydrochloride	5	
20	Moxifloxacia	ı Hydrochloride	0.75	
21	Sulfadoxine		10	
22	Sofobuvir		0.5	
23	Pantoprazole		9	41884.000
24	Saxagliptin		0.5	
25	Sitagliptin		10	
	Total /Month		109	
	Total /Year		130	8

Quantity of the product may very individually in each group keeping total quantity of all groups same.

Total production capacity will be 52.5 MT/M + 109 MT/M = 161.5 MT/M

	1												7	
16	Rain water	r Harvest	ing (R	WH)				To be pro	To be proposed.					
17.	Total Wate	er Requir	ement											
		Consun	nption(CM	D)	Loss	(C)	MD)		Efflue	ent(CMD)		H	
	Source	Existi ng	Propo		Total	Exist g		Propose d	Tot al	Existi ng		Tot 1	а	
	Domesti c	17	12		29	3.5		2.5	6	13.5	9.5	23 (ST	F	
	Industria 1 Processi ng 15 120				135	3		29	32	12	91	103	1	
	Cooling Tower 50 98				148	45		88	133	5	10	15		
	Boiler Feed	6	15		21	5.5		13.5	19	0.5	1.5	2		
	Gardenin g	-	Treat water from STP	- 1	-	-		-	-	-	-	-		
	Total	88	245		333	57		133	190	31	112	143	+	
18.	Storm wat	er draina	ge	Natural water drainage pattern: Proper and separate s water drains available, as per natural slope.						parate storm	1			
19.	Sewage ge treatment	eneration	and	Amt of sewage generation (CMD):23CMD Proposed treatment for the sewage: STP Capacity of STP (CMD): (If Applicable) 30CMD					CMD					
20.	Effluent C	haracteri	stics	Sr. No.	s mg/l		Ch cs	et Effluent aracteristi	Efflu		Effluent discharge standards (MPCB)		£	
				1	pН		5-9)	7-8	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	6.5 -9.0		Í	
				2	TSS		300	0-350	50-80)	<100		١	
				3	COI)	50	00-6000	200-2	240	<250		Ĭ	
				4	BOI 27°0 3 da	C for	200	00-3000	80-90)	<100			
				5	TDS	3	20	00-2100	1600	-1900	<2100			
					0&0	G	20-	-25	5-6		<10			

21.	ETP details	WARRIE TO THE TOTAL THE TOTAL TO AL TO THE T	Capa Amo	icity unt	of the ET	P:130 send to	OCMD the CET	MD): 120 P: 120CM): Yes		D		
22.	Note on ETP technolo to be used	ogy	treat	the		uent.		reatment v ater will b				
23.	Disposal of The ETP sludge		ETP Talo		lge will b	e disp	osed to C	HWTHDF	at M	1W.	ML	
24.	Solid Waste Management	denomination of the second	Sr N o	De n	scriptio	Cat	Existi ng	Propose d	Tot	al	Method of Dispos al	
			1	•	ent Ivent	28. 5		100 M3/M	100 M3 M	- 1	Downst ream User	
			2	ET Sh	TP udge	34. 3	0.05 MT/M	3.6 MT/M	3.6: MT M	ı	MWM L	
		1 Acquisition	3		rbon aste	28.		3.4 MT/M	3.4 MT M	- 1	MWM L	
		**************************************	4		npty rums	33. 3	100 nos.	200 nos.	300 nos	- 1	Downst ream User	
2 5.	Atmospheric Emissions (Flue gas	Sr. No.	Poll	utan	t Source Emissi		Emission	n rate			ncentratio	n
	characteristics SPM, SO ₂ , NO _x , CO etc.)						Existing	Propos	ed		_	
		1.	SPM	1	Boiler		0.01kg/l	or 0.04 kg	g/hr	<1	50 mg/m³	
		2.	SO ₂		Boiler		2.37 kg/	hr 5.94 kg	g/hr	<1	35 kg/d	
2	Steele emission			-				Dorm.				
6.	Stacks emission Details	Atta	ached		Boiler TP Existing	'H Prop	osed	DG KVA Existing	г –	pos	ed	
		Сар	acity		0.6 (2 no.)	1.5 (3 No	o.) standby	82.5 & 62.5 KVA	150 2 nc		/A	

			Fuel type		00	LDO/Briquett		HSD HSD		
		Fuel qty kg/day MOC Shape Height m (above ground level)		~ -		5940 / 13200		30lit/hr	60 lit/hr.	
						MS		MS	MS	
						Round	Cound		Rectangular	
				14		27		-	3.5 abo	
		11	Control equipments		ack	Stack		Stack, Acousti c enclosur e	Stack, Acoustic enclosure	
7.	Details of Fuel to be used:	Sr. No.	Fuel	Daily consumption (TPD/KLD)		on	Calorific value (Kcals/kg	% Ash	% Sulphur	
					Existing	Propose	d			
		Personal Per	LDO 792		792 kg/day	5940 kg	/day	10000	0.02	1.8
		2	Briqu te	ıet	- 13200 kg/day,			4000	5	_
		3	HSD	SD 30 lit/hr.		60 lit/hr	•	11000	0.01	0.05
		Source of Fuel: From market/ out sider fuel companies Mode of Transportation of fuel to site: By Road & through								
2 8.	Energy	Power Supply: Existing Power requirement: 679 KVA Proposed power requirement: 1018 KVA DG sets: Existing- 2 no. 82.5 & 62.5 KVA capacity Proposed – 2 no. 150 KVA each								
2 9.	Green Belt Development	Green belt area: 1010 sq. m. Number of species of trees & shrubs to be planted: 50 nos.								
3	Details of pollution control Systems:	Sr. No.	No Source pollutio				Proposed to be installed		led	
0.		pend	Air		By dispersal into atmosphere through chimney of By dispersal into atmosphere through chimney of adequate recommended height.			dequate/		

	3	THE PERSON NAMED IN COLUMN TO THE PE		adequate/ recommended height.	
		2	Water	ETP consisting of Primary treatment only.	New ETP consisting of Primary, secondary and Tertiary treatment. Treated effluent will be sent to CETP
		3	Noise	PPE & Acoustic enclosure for existing DG set.	Acoustic enclosure for proposed D.G of 150 KVA & PPE
		4	Solid Waste	Hazardous waste is being disposed to CHWTSDF	Hazardous waste will be disposed to CHWTSDF There is no increment in Non-hazardous waste

Sr. No.	Description	Existing (MTPM)	Proposed (MTPM)	Total (MTPM)			
	Existing Products						
1	Erythromycin Salts						
2	Pyrazinamide Salts	7					
3	Chloramphenicol	52.50	NIL	52.50			
4	Chloramphenicom Palmitate						
5	Sulphadoxin						
6	1						
	Proposed Products	•	1	1			
A	Cardiovascular Products						
1	Atorvastatin						
2	Losartan Potassium	NIL	20	20			
3	Telmisartan						
4	Clopidogrel						
В	Erythromycin Derivatives						
5	Erithromycin	NIL	10	10			
6	Erythromycin Stearate						
7	Erythromycin Estolate						
С	Anti Tuberculosis Products			20			
8	Ethambutol	NIL	20				
9	Pyrazinamide						
D	Gliptins						
10	Vildagliptin	NIL	2	2			
11	Linagliptin						
12	Teneligliptin						
E	Individual Products						
13	Olmesartan		2	2			
14	Erythromycin 11,12 Carbonate		0.75	0.75			
15	Erythromycin Ethyl Succinate		2.5	2.5			
16	Rosuvastin		1	1			
17	Pregabilin		5	5			

18	Levetricetam		10	10
19	Ambroxol Hydrochloride	NIL	5	5
20	Moxifloxacin Hydrochloride		0.75	0.75
21	Sulfadoxin		10	10
22	Sofobuvir		0.5	0.5
23	Pantoprazole		9	9
24	Saxagliptin		0.5	0.5
25	Sitagliptin		10	10

Total Production capacity will be 52.50 + 109 Mt/M = 161.50 MT/M

3. The proposal has been considered by SEIAA in its 103rd meeting & decided to accord environmental clearance to the said project under the provisions of Environment Impact Assessment Notification, 2006 subject to implementation of the following terms and conditions:

General Conditions for Pre-construction phase: -

- (i) This environment clearance is issued subject to achieving Zero Liquid Discharge (ZLD).
- (ii) Project Proponent to take utmost precaution for the health and safety of the people working in the unit as also for protecting the environment.
- (iii) No additional land shall be used /acquired for any activity of the project without obtaining proper permission.
- (iv) PP to take utmost precaution for the health and safety of the people working in the unit as also for protecting the environment.
- (v) For controlling fugitive natural dust, regular sprinkling of water & wind shields at appropriate distances in vulnerable areas of the plant shall be ensured.
- (vi) Proper Housekeeping programmers shall be implemented.
- (vii) In the event of the failure of any pollution control system adopted by the unit, the unit shall be immediately put out of operation and shall not be restarted until the desired efficiency has been achieve.
- (viii) A stack of adequate height based on DG set capacity shall be provided for control and dispersion of pollutant from DG set. (If applicable).
- (ix) A detailed scheme for rainwater harvesting shall be prepared and implemented to recharge ground water.
- (x) Arrangement shall be made that effluent and storm water does not get mixed.
- (xi) Periodic monitoring of ground water shall be undertaken and results analyzed to ascertain any change in the quality of water. Results shall be regularly submitted to the Maharashtra Pollution Control Board.
- (xii) Noise level shall be maintained as per standards. For people working in the high noise area, requisite personal protective equipment like earplugs etc. shall be provided.
- (xiii) The overall noise levels in and around the plant are shall be kept well within the standards by providing noise control measures including acoustic hoods, silencers,

- enclosures, etc. on all sources of noise generation. The ambient noise levels shall confirm to the standards prescribed under Environment (Protection) Act, 1986 Rules, 1989.
- (xiv) Green belt shall be developed & maintained around the plant periphery. Green Belt Development shall be carried out considering CPCB guidelines including selection of plant species and in consultation with the local DFO/ Agriculture Dept.
- (xv) Adequate safety measures shall be provided to limit the risk zone within the plant boundary, in case of an accident. Leak detection devices shall also be installed at strategic places for early detection and warning.
- (xvi) Occupational health surveillance of the workers shall be done on a regular basis and record maintained as per Factories Act.
- (xvii) The company shall make the arrangement for protection of possible fire hazards during manufacturing process in material handling.
- (xviii) The project authorities must strictly comply with the rules and regulations with regard to handling and disposal of hazardous wastes in accordance with the Hazardous Waste (Management and Handling) Rules, 2003 (amended). Authorization from the MPCB shall be obtained for collections/treatment/storage/disposal of hazardous wastes.
- (xix) The company shall undertake following Waste Minimization Measures:
 - Metering of quantities of active ingredients to minimize waste.
 - Reuse of by- products from the process as raw materials or as raw material substitutes in other process.
 - Maximizing Recoveries.
 - Use of automated material transfer system to minimize spillage.
- (xx) Regular mock drills for the on-site emergency management plan shall be carried out. Implementation of changes / improvements required, if any, in the on-site management plan shall be ensured.
- (xxi) A separate environment management cell with qualified staff shall be set up for implementation of the stipulated environmental safeguards.
- (xxii) Separate funds shall be allocated for implementation of environmental protection measures/EMP along with item-wise breaks-up. These cost shall be included as part of the project cost. The funds earmarked for the environment protection measures shall not be diverted for other purposes and year-wise expenditure should reported to the MPCB & this department
- (xxiii) The project management shall advertise at least in two local newspapers widely circulated in the region around the project, one of which shall be in the marathi language of the local concerned within seven days of issue of this letter, informing that the project has been accorded environmental clearance and copies of clearance letter are available with the Maharashtra Pollution Control Board and may also be seen at Website at http://ec.maharashtra.gov.in

- (xxiv) Project management should submit half yearly compliance reports in respect of the stipulated prior environment clearance terms and conditions in hard & soft copies to the MPCB & this department, on 1st June & 1st December of each calendar year.
- (xxv) A copy of the clearance letter shall be sent by proponent to the concerned Municipal Corporation and the local NGO, if any, from whom suggestions/representations, if any, were received while processing the proposal. The clearance letter shall also be put on the website of the Company by the proponent.
- (xxvi) The proponent shall upload the status of compliance of the stipulated EC conditions, including results of monitored data on their website and shall update the same periodically. It shall simultaneously be sent to the Regional Office of MoEF, the respective Zonal Office of CPCB and the SPCB. The criteria pollutant levels namely; SPM, RSPM. SO₂, NOx (ambient levels as well as stack emissions) or critical sectoral parameters, indicated for the project shall be monitored and displayed at a convenient location near the main gate of the company in the public domain.
- (xxvii) The project proponent shall also submit six monthly reports on the status of compliance of the stipulated EC conditions including results of monitored data (both in hard copies as well as by e-mail) to the respective Regional Office of MoEF, the respective Zonal Office of CPCB and the SPCB.
- (xxviii)The environmental statement for each financial year ending 31st March in Form-V as is mandated to be submitted by the project proponent to the concerned State Pollution Control Board as prescribed under the Environment (Protection) Rules, 1986, as amended subsequently, shall also be put on the website of the company along with the status of compliance of EC conditions and shall also be sent to the respective Regional Offices of MoEF by e-mail.
- 4. The environmental clearance is being issued without prejudice to the action initiated under EP Act or any court case pending in the court of law and it does not mean that project proponent has not violated any environmental laws in the past and whatever decision under EP Act or of the Hon'ble court will be binding on the project proponent. Hence this clearance does not give immunity to the project proponent in the case filed against him, if any or action initiated under EP Act.
- 5. The Environment department reserves the right to revoke the clearance if conditions stipulated are not implemented to the satisfaction of the department or for that matter, for any other administrative reason.
- 6. **Validity of Environment Clearance**: The environmental clearance accorded shall be valid for a period of 7 years as per MoEF & CC Notification dated 29th April, 2015 to start of production operations.
- 7. In case of any deviation or alteration in the project proposed from those submitted to this department for clearance, a fresh reference should be made to the department to assess the adequacy of the condition(s) imposed and to incorporate additional environmental protection measures required, if any.
- 8. The above stipulations would be enforced among others under the Water (Prevention and Control of Pollution) Act, 1974, the Air (Prevention and Control of Pollution) Act, 1981, the Environment (Protection) Act, 1986 and rules there under, Hazardous Wastes (Management and Handling) Rules, 1989 and its amendments, the public Liability Insurance Act, 1991 and its amendments.

9. Any appeal against this environmental clearance shall lie with the National Green Tribunal (Western Zone Bench, Pune), New Administrative Building, 1st Floor, D-, Wing, Opposite Council Hall, Pune, if preferred, within 30 days as prescribed under Section 16 of the National Green Tribunal Act, 2010.

(S. M Gávai)

)

Member Secretary, SEIAA.

Copy to:

- 1. Shri T. C. Benjamin, IAS (Retired), Chairman, SEAC-I, 602, PECAN, Marigold, Behind Gold Adlabs, Kalyani Nagar, Pune 411014.
- 2. Additional Secretary, MoEF & CC, Indira Paryavaran Bhavan, Jorbagh Road, Aliganj, New Delhi-110003.
- 3. Member Secretary, Maharashtra Pollution Control Board, with request to display a copy of the clearance.
- 4. The CCF, Regional Office, Ministry of Environment and Forest (Regional Office, Western Region, Kendriya Paryavaran Bhavan, Link Road No- 3, E-5, Ravi-Shankar Nagar, Bhopal- 462 016). (MP).
- 5. Regional Office, MPCB, Thane.
- 6. Collector, Palghar
- 7. IA- Division, Monitoring Cell, MoEF & CC, Indira Paryavaran Bhavan, Jorbagh Road, Aliganj, New Delhi-110003.
- 8. Select file (TC-3)

(EC uploaded on